Interlayer exciton thermalization probed by moiré-split intralayer states in WSe₂/WS₂ heterobilayers

 $\underline{\text{Jinjae Kim}}^1$, Claudia Gollner², Yannick Pleimling^{2,3}, Kenji Watanabe⁴, Takashi Taniguchi⁴, Tony Heinz^{2,3}, Hyunyong Choi¹

¹Seoul National University, Seoul, Korea, Republic of. ²SLAC National Accelerator Laboratory, Menlo Park, USA. ³Stanford University, Stanford, USA. ⁴Advanced Materials Laboratory, Tsukuba, Japan

Abstract

Moiré interlayer excitons (IXs) in transition metal dichalcogenides heterostructures have recently attracted significant attention due to their unique optical properties and potential for novel optoelectronic applications [1]. Strong interlayer coupling enables the observation of IXs primarily via photoluminescence. While several studies have attempted to probe IXs absorption [2] and dynamics via transient spectroscopy [3], investigations into their thermalization processes have remained limited due to weak absorption signals and the insufficient temporal resolution of time-resolved photoluminescence techniques.

Here, we investigate the thermalization dynamics of IXs by probing the moiré-induced splitting of intralayer exciton states with distinct spatial distribution in WSe₂/WS₂ heterobilayers [Figs. 1(a) and 1(b)] [4]. Using ultrafast transient reflectance spectroscopy, we monitor IX thermalization by deconvoluting spectral parameters such as peak energy, linewidth, and spectral weight. We find that IX thermalization proceeds on a ~10 ps timescale [Fig. 1(c)], dominated by phonon-exciton scattering under low excitation densities below the moiré density. At higher excitation densities, carrier-carrier interactions provide an additional scattering channels, accelerating the thermalization process [Fig. 1(d)]. Our findings reveal insights into the interplay between phonons, carriers, and moiré potentials in IX thermalization dynamics, and introduces a new approach for pump–probe spectroscopy based on spatial exciton distributions, extending beyond the conventional momentum-resolved band framework.