## Proximity Effects in the Excitonic Physics of TaSe<sub>2</sub>/MoSe<sub>2</sub> van der Waals Heterostructure

<u>Navya Biju</u>, Rajeev Kini IISER, Thiruvananthapuram, India

## **Abstract**

We study the proximity effects in a van der Waals heterostructure composed of semiconducting 2H-MoSe<sub>2</sub> and semi-metallic 2H-TaSe<sub>2</sub>. Photoluminescence (PL) measurements at 7 K reveal a redshifted neutral exciton peak and sharp, low-energy emission features, indicating proximity-induced electronic modifications. These spectral signatures are sensitive to factors such as twist angle, interlayer strain, and TaSe<sub>2</sub> thickness. First-principles band structure calculations support these findings, showing a reconfiguration of valence band maxima that promotes indirect transitions. Our results highlight the role of orbital hybridization and interfacial effects in tuning the optical properties of MoSe<sub>2</sub> via TaSe<sub>2</sub> coupling.