Ultrafast All-Optical Probe of Broken Time-Reversal Symmetry in Monolayer WSe₂

<u>Paul Herrmann</u>¹, Sebastian Klimmer^{1,2}, Thomas Lettau¹, Anastasios Papavasileiou³, Kseniia Mosina³, Zdeněk Sofer³, Ioannis Paradisanos⁴, Daniil Kartashov¹, Jan Wilhelm⁵, Giancarlo Soavi¹

¹Friedrich Schiller University Jena, Jena, Germany. ²Australian National University, Canberra, Australia. ³University of Chemistry and Technology, Prague, Czech Republic. ⁴Institute of Electronic Structure and Laser, Heraklion, Greece. ⁵University of Regensburg, Regensburg, Germany

Abstract

We investigate broken time-reversal symmetry (TRS) and its effect on the spin-valley degree of freedom in monolayer transition metal dichalcogenides. Introducing a valley imbalance at the $\pm K$ points breaks TRS. We probe this using the SHG ratio η , i.e. comparing second harmonic signals under circularly vs. linearly polarized excitation. Analytical and numerical solutions show circular light couples selectively to the $\pm K$ valleys, while linear light probes the Γ point. This symmetry contrast explains the experimentally observed deviation from the expected SHG ratio of 2.