Multistability of exciton-polariton condensates resonantly excited in large mesas of a planar high-Q microcavity

<u>Vladimir Kulakovskii</u>, Andrey Demenev, Nikolay Ipatov, Sergey Gavrilov ISSP RAS, Chernogolovka, Russian Federation

Abstract

The multistable behavior of 2D condensates of low-polaritons (LPs) resonantly excited in large square mesas of planar high-Q MCs with LP damping g =5 meV is investigated. It is found that parametric scattering of LPs in mesas leads to the formation of an intermediate stability branch in the bistable 2D LP system under pumping in small regions of $\hbar w_p$ at the violet edges of optically active LP resonances Eij. In this case, the positive feedback between the growth of $|y|^2$ and the blue shift of the nearest resonance Eij* leads to instability of the Eij* mode and its transition to the upper branch of the S-curve, but in a certain region of pump densities it is insufficient to cause instability of the entire condensate. Outside these regions, the LP system in a mesa, as in a planar MC, exhibits bistable behavior.