Enhancing Quantum Dot-Waveguide Chiral Coupling with Optimized Polarization

<u>Jakub Rosiński</u>¹, Michał Gawełczyk¹, Karol Tarnowski², Paweł Karwat³, Daniel Wigger⁴, Paweł Machnikowski¹

¹Institute of Theoretical Physics, Wrocław University of Science and Technology, Wrocław, Poland. ²Department of Optics and Photonics, Wrocław University of Science and Technology, Wrocław, Poland. ³School of Physics and CRANN Institute, Trinity College Dublin, Dublin, Ireland. ⁴Department of Physics, University of Münster, Münster, Germany

Abstract

We demonstrate that optimizing quantum dot (QD) polarization in photonic crystal waveguides enhances chiral coupling, achieving 60% spatially averaged directionality while overcoming random QD positioning limitations in epitaxy. Elliptical polarization enhances high-directionality regions compared to circular polarization and improves their overlap with Purcell-enhanced areas. k·p modeling confirm that neutral excitons in realistic QDs attain this optimal polarization under weak (0.15 T) magnetic fields.