Very strong coupling and room-temperature polariton condensation with quasi-2D perovskites

Hamid Pashaei Adl¹, Christoph Bennenhei¹, Marti Struve¹, Paulina Peksa², Mateusz Dyksik², Michal Baranowski², Kok Wee Song³, Moritz Gittinger¹, Christoph Lienau¹, Jonas K. König⁴, Jamie M. Fitzgerald⁴, Naga Prathibha Jasti⁵, Falk Eilenberger⁶, Paulina Plochocka⁷, Ermin Malic⁴, Oleksandr Kyriienko⁸, Martin Esmann¹, Christian Schneider¹ ¹Institut für Physik, Fakultät V, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany., Oldenburg, Germany. ²Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, 50370 Poland., Wroclaw, Poland. ³Department of Physics, Xiamen University Malaysia, 49300 Sepang, Malaysia., Sepang, Malaysia. ⁴Fachbereich Physik, Philipps-Universität, Marburg, 35032, Germany., Marburg, Germany. ⁵Chemistry and Physics of Materials Unit, JNCASR, Bangalore, 560064, India., Bangalore, India. ⁶Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, 07745 Jena, Germany., Jena, Germany. ⁷Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Grenoble Alpes, Université Toulouse, Grenoble and Toulouse, France., Grenoble, France. ⁸School of Mathematical and Physical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom., Sheffield, United Kingdom

Abstract

In this study, we demonstrate widely tunable room-temperature cavity exciton polaritons at the cross-over from the strong coupling to the very strong coupling regime, in mechanically exfoliated quasi-2D Ruddlesden-Popper iodide perovskite (BA)₂(MA)₂Pb₃I₁₀ integrated into an open microcavity. We gradually increased the cavity length and observed a pronounced anti-crossing behavior associated with successive longitudinal cavity modes. The Rabi splitting exhibited a systematic reduction with increasing cavity length; however, the scaling behavior deviated from the conventional square root dependence typically observed in the strong coupling regime. Additionally, under strong, non-resonant optical pumping, we observe a polariton condensation and through interferometric measurements, we confirm the emergence of spatial coherence across the condensate. Our findings provide a foundation for future on-chip applications involving tunable polaritonic and nonlinear optical devices based on strongly coupled perovskite systems.