Probing Coherent Optical Response of Coupled Excitons and Spin States in a Quantum Dot Molecule

Michelle Lienhart¹, Pavel Daskalov¹, Christopher Thalacker¹, Nadeem Akhlaq¹, Markus Stöcker¹, Krzysztof Gawarecki², Frederik Bopp¹, Charlotte Cullip¹, Andreas Wieck³, Arne Ludwig³, Stephan Reitzenstein⁴, Kai Müller⁵, Pawel Machnikowski², Jonathan Finley¹

¹Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany. ²Institute of Theoretical Physics, Wroclaw University of Science and Technology, Wroclaw, Poland. ³Faculty of Physics and Astronomy, Ruhr-University Bochum, Bochum, Germany. ⁴Institute of Solid-State Physics, Technical University of Berlin, Berlin, Germany. ⁵TUM School of Computation, Information, and Technology, Technical University of Munich, Munich, Germany

Abstract

Measurement-based protocols for quantum technologies require on-demand sources of multi-dimensional photonic cluster states. Photonic cluster states with two-dimensional entanglement structure can be generated using a pair of vertically stacked and tunnel-coupled quantum dots known as a quantum dot molecule (QDM). The protocols to create these cluster states rely on the coherent excitation of tunnel-coupled and spatially indirect excitonic transitions from well-defined few-spin states. Here, we explore the coherent response of spatially direct and indirect excitons to a pulsed Rabi drive as the degree of hybridization of the electron wave function is electrically tuned. In addition, we also show that the phonon-mediated orbital relaxation from antibonding to bonding coupled orbitals is spin conserving.