Quadrupolar Excitons in MoSe₂ Bilayers

Jakub Jasiński ^{1,2,3}, Joakim Hagel⁴, Samuel Brem⁵, Edith Wietek¹, Takashi Taniguchi⁶, Kenji Watanabe⁶, Alexey Chernikov¹, Nicolas Bruyant³, Mateusz Dyksik², Alessandro Surrente², Michał Baranowski², Duncan Maude³, Ermin Malic⁵, Paulina Plochocka³

¹TUD Dresden University of Technology, Dresden, Germany. ²Wroclaw University of Science and Technology, Wrocław, Poland. ³Laboratoire National des Champs Magnétiques Intenses, Toulouse, France. ⁴Chalmers University of Technology, Gothenburg, Sweden.

⁵Philipps-Universität Marburg, Marburg, Germany. ⁶National Institute for Materials Science, Tsukuba, Japan

Abstract

We investigate the evolution of the excitonic energy landscape under external electric field in double-gated devices based on an inherently robust and scalable system of natural MoSe₂ homobilayeres. For the investigation, we employ the combination of electro-optical measurements and many-body microscopic model. Most notably, for the first time in a bilayer TMD system we observe the emergence of quadrupolar exciton states. These arise as a result of the superposition of anti-aligned inter-layer dipolar excitons enabled by a coupling mechanism attributed to to the dipolar exchange interaction. Moreover, we show a broad tunability of the quadrupolar, inter-layer and intra-layer states via external field. Overall, our results highlight the natural bilayers as a very promising field-tunable platform for investigation of nanoscale many-body physics.