Ultrafast Carrier and Conductivity Dynamics in Rh-doped InGaAsbased Multi-Quantum-Well Heterostructures

Alexander Dohms¹, Mykhaylo Semtsiv², Tina Heßelmann¹, Michael Schulz³, <u>Enrique</u>

<u>Castro-Camus</u>³, Steffen Breuer¹, Lars Liebermeister¹, Martin Schell¹, Martin Koch³, Wiliam

Ted Masselink², Robert B. Kohlhaas¹

Abstract

This study presents Rh-doped InGaAs-based multi-quantum-well (MQW) heterostructures designed for ultrafast photoconductive antennas in terahertz (THz) time-domain spectroscopy. The structure includes a Rh-doped InGaAs quantum well, designed for carrier trapping, between high-mobility InGaAs layers and InAlAs barriers. Optical-pump optical-probe (OPOP) and optical-pump THz-probe (OPTP) measurements show ultrafast carrier dynamics, with 1/e lifetimes ranging from 0.36–0.75 ps (OPOP) and 0.62–1.20 ps (OPTP). These reflect rapid carrier thermalization, relaxation, and trapping and confirm the potential of Rh-doped MQWs as photoconductive THz emitters and receivers.

¹Fraunhofer HHI, Berlin, Germany. ²Humboldt University Berlin, Berlin, Germany.

³Philipps-Universität Marburg, Marburg, Germany