Electronic Coupling and Photoluminescence Anisotropy in WS₂-Molecular Crystal Heterostructures

Mohammed Adel Aly^{1,2,3}, Dominik Muth⁴, Bettina Wagner⁵, Martin Koch¹, Johanna Heine⁵, Marina Gerhard⁴

¹Department of Physics and Marburg Centre for Quantum Materials and Sustainable Technologies, Semiconductor Photonics Group, Philipps-Universität Marburg, Marburg, Germany. ²Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt. ³Physikalisches Institut, Universität Münster, Münster, Germany. ⁴Department of Physics and Marburg Centre for Quantum Materials and Sustainable Technologies, Semiconductor Spectroscopy Group, Philipps-Universität Marburg, Marburg, Germany. ⁵Department of Chemistry and Marburg Centre for Quantum Materials and Sustainable Technologies, Philipps-Universität Marburg, Marburg, Germany

Abstract

Understanding and controlling interfacial electronic interactions is essential for designing next generation optoelectronic devices based on two-dimensional (2D) materials. We investigate van-der Waals heterostructures based on monolayer tungsten disulphide (WS₂) and crystalline flakes pyrenemethylammonium chloride (PyMACl). Using time- and polarization-resolved photoluminescence (PL) spectroscopy, we uncover clear signatures of electronic interaction between the two materials. First, a significantly faster PL decay of PyMACl in the heterostructure compared to isolated flakes indicates efficient interfacial interaction. Second, the WS₂ emission exhibits strong polarization anisotropy in the heterostructure region, suggesting symmetry breaking and altered excitonic transitions due to interfacial coupling. Together, these phenomena point to a consistent picture of interfacial electronic coupling that modifies the optical response of both materials. Our results demonstrate how ionic molecular crystals can act as active tuning layers in 2D heterostructures, offering a novel route to engineer light–matter interactions through deliberate interface design.